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We simulate the effective lagrangian description of gauge theories with spontaneous mass 
generation by considering the chiral Gross.-Neveu model embedded in a two-dimensional tJI l )  
gauge theory. It is shown that in this hybrid model the non-vanishing expectation value of t~/J is due 
to the contribution of instanton configurations with fractional winding. 

1. Introduction and out look  

The so-called U(1)-problem 11] has been subject of much discussion. Several 
points of view have been advocated for its resolution [2, 3]. In particular, Crewthcr 
has repeatedly emphasized [4] that configurations with fractional winding should 
play a crucial role in the dynamical generation of the quark mass via a topological 
symmetry  breaking mechanism. 

In order to gain some insight into the topological aspects of this problem, we will 
consider (as usual) a two-dimensional model in which some of the features of the 
realistic U(I)  problem are present. The tirst candidate one might be tempted to 
consider would be QED2 with flavour [5], but this model, contrary to what is 
expected in Q C D 4  [6] ,  does not exhibit dynamical mass generation. We hope. 
however, to mimic this mass generation by adding to the QED2 gauge theory a 
fermion self-interaction of the chiral Gross -Neveu  type [7], 

.~=_,~ ~,,, ~( e ) g~ 
.+, ~,,., + i.a + ~7~ A ~0+ [ ( ~ b  )2 + ( ~ i y  s(,'}2]. (1.I)  

t Supported by FAPESP and DFG: contract Az 1()0/5. 

454 



K.D. Rothe, J.A. Swieca / U(1) problem 455 

Here the fermions are taken to belong to the fundamental representation of U(N). 
The factor 1/~/N in the coupling constants e and g has been introduced for later 
convenience. 

The lagrangian (1.1) may be regarded as a substitute for an effective QCD4 
lagrangian [6]. The corresponding theory shares with QCD4 the property of U(1) 
invariance, spontaneous mass generation and existence of gauge-field configurations 
belonging to non-trivial topological classes. It does not, however, share the property 
of being SU(N) invariant. Thus, unlike in QCD4, chiral SU(N) invariance is here 
explicitly broken by the chiral Gross-Neveu interaction. 

In the pure chiral Gross-Neveu (GN) model, the spontaneous mass generation is 
accompanied by the appearance of zero-mode excitations [7]. Since the U( 1 ) vector 
and axial vector currents are conserved, this is reminiscent of the familiar Nambu-  
Goldstone mechanism. In four dimensions this would imply a spontaneous break- 
down of the chiral U(1) symmetry. However, in two dimensions zero-mass particles 
do not exist [8]. We shall therefore refer to them as "would be" Goldstone bosons. 
Their presence can only be reconciled with the Wightman axioms of positivity if they 
exponentiate [9]. This is what indeed happens in this model. In exponentiated form 
the would be Goldstone bosons - and hence t0 (~ - still carry the U(1) charge and 
chiral selection rule, implying (q~C;N~(;r~) = O. Only after extraction of the U( ! ) part is 
one left with a fermion field t/~ which develops a non-vanishing expectation 
value ( ~ ) : 0 .  Since t,~ is invariant under U(1)×U(1)  there is no need for a 
spontaneous breakdown of the chiral U(1 ) symmetry. 

The above mechanism has been clearly exposed in a paper by Witten [10]. In 
operator  language (f stands for flavour) 

where 

" ' { -  '-[ I ~f (x)=  e : "  exp i',/~Tr'~'A~T ~sCb"' + D~:lO~d~ ''' , 
il ~ { .~. ) .~. I 

(1.2a) 

( 1.2b) 

q~, &"' are the canonically quantized "potentials" of the U(1) and diagonal and 
SU(N) currents, respectively [11, 5] 

1 
t~<~N(X)~A ~'' --(;'~" ' = -- eu, O"~b"~(x). (1.4) %,q/ tx) -- ~/' 7r 

The ~" '  satisfy a coupled sine-Gordon-l ike system of equations, whereas the ~0 is a 
free field: 

5 ~  = 0 .  (1.5) 



456 K.D. Rothe. J.A. Swieca / l_l( 1 } problem 

Since the ,;b"' are massive fields, the opera tor  ~ r ~  no longer carries a selection 
rule. On the other hand, ~ m  carries the selection rule of a free massless fermion field 
transforming under U( 1 t x U( 1 ). When introducing an additional coupling to a gauge 
field as in ( 1.1 ), only this U( 1 ) part will participate in the electromagnetic interaction: 
A~, will acquire a mass cia the usual Schwinger mechanism and ~ will spurionize on 
the gauge-invariant subspace. The only zero-mass excitations remaining are pure 
gauge and the chiral U(I)  invariance is broken spontaneously. Explicitly, one has 

WT'/" 
A u ( x ) = - - - e u , , O ' ( ~ ' ( x ) + , 0 ( x ) l ,  ' ],0 = 0 ,  1.6) 

( _J+ ~ ( x ) =  (I. 0u~ =5. '0 ,  O . = e u , , O ' .  

The 6-dependent  exponential  is pure gauge. The only other vestige of the original 
would be G.oldstone boson is the spurionic operator  [ 12] 

( r . = e x p  i y . , , (~(xI+,0(x))+i  d~:lc)o(~+,0) . (1.7) 
I 

which carries the original U ( I ) x U ( 1 )  selection rule. On the gauge-invariant 
subspace this spurion is reduced to a phase exp (iv'~rO./,]N), now labelling the 
gauge-invariant vacua [13]. Hence.  the addition of an electromagnetic interaction 
results into a " ' t ransmutat ion" of the would-be Goldstone boson of the chiral GN 
model into a spurion. It follows from this that <014~010) e 0. Had we not included the 
GN interaction, the fields carrying the SU(NI  degrecs of f reedom would also have 
rcmained massless, and the corresponding selection rules would have prevented ~tO 
from developing a vanishing expectation value. 

Already, from the opera tor  solution (1.6) we may learn about the gauge classes 
that will play a role in the corresponding functional formulation: Indeed, on the 
gauge invariant subspace, cr',¢r~ is equivalent to the opera tor  T[ . I ]  inducing non- 
trivial gauge transformations [ 121: 

T[.II I.,."~lj ~- o'2,rl , on h"~,h~, 

2rr 
. l lJ"~;( t  a o ) - . t l l " ~ J ( t ,  - o o ) - - - -  [--J.'l = 0 .  

N 

From here we infer that the relevant gauge-field configurations for our model will 
carry fractional winding. 

Spurionic operators  of the form ( 1.7) already appear  in the opera tor  solution of the 
pure Schwinger model with flavour, but due to the SU(N)  selection rules mentioned 
above, only (~r~cr~)N generate the vacua of this model [5]. As a consequence, the purc 
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Schwinger model does not exhibit fractional winding numbers, except for the 
meron-like configurations related to charge spurionization [12 ]. 

In sects. 2, 3, we shall explicitly exhibit the above outlined mechanism in the 
Feynman path formulation. A consideration of the problem in the leading order of an 
I/N expansion is left for sect. 4. We conclude with some remarks. 

2. Fractional  winding in a path-integral  approach 

In this section we want to exhibit directly the relevant A,, configurations in a 
Feynman path formulation. In order to make the parallelism with respect to the 
operator  discussion as close as possible, we shall use the (euclidean) path-integral 
approach in the equivalent bosonized form [ 14 ]. In order to identify the winding class 
of the configurations responsible for the dynamical mass generation with a spon- 
taneous breakdown of the U(I) symmetry without Goldstone bosons, we consider 
the expectation value 

(O]J~(x)lO)= (J±(x))sv~N~N ~ I d[A~]d[q~]exp [ + 2i~/~ q~(x)] 

, ,, (J_. (x))st;,.v,_ I H exp [ + 

where J i  is the chirality + 2 operator 

1+3, 5 

exp 

a multiplicative renormalization prescription being understood, and 

exp [ - [  ~ ' t , ~ ] ,  

(2.1a) 

(2.1b) 

(2.2) 

, ie ie 0 
(~- ' tJ( l )  = aF~.vF~.v + .  i~.¢ a .~  + ~ (e,.,, O,#)A,, e.vF,,,, (2.3a) 

" ,,';7 "/N 4"rr 

1 a~,~,, ' = o,,d~ 
iD 

N - ~ t ~ f  

)2} 
"Ai '  i., -+  sin 

i t)  l \ I" i l )  

(2.3b) 

Hence, in the bosonized language the U(1) part decouples completely from the 
SU(N) part in the iagrangian. The U(1) part is just the bosonized version of the 
Schwinger model lagrangian; it involves a zero-mass scalar field ~0. "~SV~N~ is the 
SU(N) part of the chiral GN lagrangian describing the interaction of N - 1 massive 
scalar fields of the s ine-Gordon type. The factorization (2.1) into a Schwinger and 
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SU(N) chiral GN part is in fact a general property of all correlation functions in this 
model. 

(J±)sutN) can be computed in a 1 /N expansion (see sect. 4). On the other hand, the 
U(1) part in (2. I a) may be integrated explicitly. One could first integrate with respect 
to A~, ; this would lead to an effective lagrangian now involving a massive scalar field 
q~, thus explicitly exhibiting the loss of the chiral selection rule. However, if one wants 
to identify the winding configurations, one should first integrate with respect to the 
fermion degree of freedom ¢; this leaves one with, after renormalization, 

(OlJi(x)lO)=(J±)su~N, I d[A~] exp [ - f d 2 z ¼ F , , ( z ' F ~ , . ( z ) ]  

• e d2z 

×e VtAIcxp z~ v"-N 

where - F [ A ]  is just the logarithm of the fermion determinant in the Schwinger 
model [15] 

e 2 f f  . ,  , , F[ A ] = ~--~ . .  d2z d 'z  e,AF~,, (z )D(z - z )e.t,F.p(z ), (2.5) 

with 
1 

DD(z)  = -~52(z), D(z) = 4-rr In/z-~z 2 (2.6) 

The remaining integration in (2.4) can also be done explicitly; it is saturated by the 
field configuration [16] 

AI ' ' /N ' ,Z)= +27r(~e~ O--~@(X--Z) 
N e.,, Oz~ ' 

; , ( z )= D ( z ) -  A(z;  e---~) , (2.7) 

2 2 

which carries a fractional winding number v = ± I / N ;  it is responsible for the 
non-vanishing expectation value of 4~k. This is the mechanism envisaged by Crew- 
ther [4] for yielding (~b) # 0 in QCD4: 

AOs = 2vN. 

Fractional winding numbers also occur in the Schwinger model if the fermions are 
considered to have non-conventieaal spin [ 14]; here we see them arise in an entirely 
conventional canonical theory. 
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3. Conventional path-integral approach 

For the benefit of the reader who would like to see the results of sect. 2 rederived in 
a conventional path-integral framework, we consider the (Minkowski-space) two 
point function 

(O[TJ_(x)J+(y)10) -- N '  J d [ A .  v] d[0] d[q~]J_ (x)J~(y) 
I 

(3.1) 
where . ~ N  is the usual chiral GN lagrangian and N = (010). 

The clustering properties of the two-point function (3.1) will signalize the break- 
down of the U(1) symmetry. We can rewrite (3.1) as follows: 

(0ITJ (x)J.(y)lO)=N-'Id[AV.]exp[-ildZz~F.,,(z)FO"{z)]ZLA], (3.2) 

where 

Z[A]=-(TJ (x)J+(y)exp[~ I d~-zj.(z)a"(z)]),; N (3.3) 

is the external field correlation function of the chiral GN model. Regarding Z[A] as a 
generating functional, wc obtain from it all correlation functions with an arbitrary 
number of current insertions. 

The A .  dependence of Z[ A] may be computed by observing that the current is, of 
course, conserved and the axial current in an external potential has -  as a result of the 
asymptotic freedom of the model - the usual anomaly: 

N e 
i~,jU(x)=O, #M~(x)= 2rr vN eu,.FU"(x). (3.4) 

Functional differentiation of Z[A] with respect to A .  gives 

6z[a] ie 
6A. (z ) -  ~'N (TJ { x ) J . f y  j"{z))G:,4 A .  (3.51 

Using (3.4) and the equal-time commutation relations 

.11 
[1 (xl, J~(01]l¢.r = 0 ,  

[/~(x), J,  (0)]kT = +2J , (x)  6(x~), 
13.6) 

we obtain from (3.5) 

O,. 6Au(z) Z[A] = O, 
-) 

/5 
0~, Z [ A ] =  2i~Z[A][6- ( z  -y)]--i--Z[A]~.A ' ( z ) .  6A~,( z ) ", ,'r 

(3.7) 
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These equations have the solution 

. e  2 
Z[A]=Z[O]exp[ - t~ I Id2zd2z '3~ .A" ( z ,Dc( z - z ' ) [9 , .A" ( z ' )  ] 

(3.8) 
e 

~D,.(z) = -6Z(z), 
where evidently 

Z[0]  = (0[TJ (x)J, ( y)]0)(~N. (3.9) 

Z[A] still contains zero-mass excitations which are known to factorize exactly [see 
also eq. (1.2)]; after renormalization 

[ 1 i0] '/"~(()[TJ (x)J+(y)lO)su,N, (O]TJ_(x )J+( y)]O)(;N L--/x2(X y)2+ 

(3.10) 

Combining (3.10), (3.9) and (3.8) in (3.2) one sees that, as in the case of ref. [ 16], the 
euclidean A u integration is saturated by the classical configuration 

= 2 7r (,/  N] ,~ 
~, , , - -[ f :~(x-  z ) -  @ ( y -  z)], (3.11) A~,(z) N \ e ] 3z,, 

corresponding to a pair of an (fractional winding) instanton and anti-instanton. Thus 
we obtain 

x , 12, (OlJ-(x)J*(Y)]O)=(OlJ-(x)J+(Y)lO)su(N'exp N -Y  

Therefore,  the whole effect of the A~, integration was to turn the massless U(1) factor 
in (3.10) into a massive one. The SU(N) factor can be computed in a 1 /N  expansion 
to be (see sect. 4) 

(()lJ (x)J~(y)10)su(N,=t 2 1 am + ~ f ( x - y ) + "  • •, (3.13) 

where f(z) vanishes for z2--,oo. Hence, one obtains via clustering the tunneling 
amplitude 

( -x,101 ) ' =2rn, (3.14) 

in accordance with the results of sect. 2. 

4. 1/N expansion 

The result (3.8), where the vector potential appears in exponential  form, provides 
a direct insight into the topological structure of this model .  If one were to expand in 
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powers of e/v 'N,  this structure would become hidden, and the only remnant  of the 
0-dependence would b c a  hidden long-range force - in the sense of ref. [ 17] - in the 
correlation function (A~,J,).  The 1 / N  expansion would thus reflect the non-trivial 
topological aspects of this model only in this indirect sense. 

The investigation of a large class of two-dimensional models [7, 18, 19, 20] lends 
support  to the validity of a l / N  expansion. Nevertheless, the usual chiral GN model 
only admits such an expansion for the SU(N) symmetric part oE the fermionic 
correlation functions because of the infraparticle structure associated with the U(1 ) 
would be Goldstone boson. [ 10, 19]. This is expected not to be true for the chiral GN 
model embedded in a U(1) gauge theory, where the gauge field serves to screen the 
U(l)  x U(1) charge of the GN fermions, thus dynamically reducing them to SU(N)  
multiplets. Hence the only massless excitations remaining in the model will be pure 
gauge. It is thus instructive to see how this manifests itself in leading order of 1IN. 

For simplicity we shall restrict ourselves again to the gauge-invariant two-point 
correlation function (3.1) in which no trace of zero-mass excitations should remain. 

Introducing as usual the auxiliary fields tr and 7r, where Tr corresponds to ~iysO 
and cr corresponds to 4~b-Nm,  with m the spontaneously generated mass of the 
ordinary GN model determined in leading order by the condition 

, ( d2p i 
= j (4.1) m g tr (277") 2 p - r n  

one obtains, after integrating out the fermions, the effective action in leading order of 
1/N, 

'II = 2rrl ~A + A " I ~ , . A ' ]  (4.2) S ~  ~ [~F,,~T + 7 r l ~  + 2 c r l ~ A "  + "~ " 

Here the various vertices have the graphical representations shown in fig. 1. A 

i ~  : - ~ , . ,  ; f f Q i , ~ s  

~V : it u ~O.v - aO.av I ÷ evtx O eYv 

Fig. 1. Graphical representation of vertices in S~,. For each fermion loop introduce an extra minus sign. 



462 K.D. Rothe, J.A. Swieca / U( 1 ) problem 

s t ra ightforward calculation yields for the cor responding  Fourier  t ransforms 

[ ; , ( p )  _ 1 

2zr tan h~q~ ' 

f . ( p )  = l u~ 

27r ctnh~q~ ' 

~ 

[ '2(p)  = -2 ie ,n  P~ L i p )  
P 

,_ f ' . ( p ) l i  , p.p,.~ 
m pZ J k g . , - - - ~ - ] ,  

f 'u(P~ : 0, 

14.3) 

where ,¢ is the usual rapidity variable, 

p :  = _ 4 m  2 sinh 2 i ~,q~. 

Sen is diagonal ized by defining a new field 

rr' = rr -- 2ern % A "  (4.41 

and we are left with 

S~=2II l[(rl-"cr+cr'['='+A~'([]+~)( g", - 3e-3'"] A " ]  " B ' .I (4.5) 

Keeping in mind (4.4) we obtain f rom here the following Feynman  rules. Pro- 

paga  tots: 

A=,(p) = - 2 m  ct~h~__~ 

1 

tanh 2f  r , .a,,(p) = --2rri 
q: 

i _ p~p,,~ 
19u , (p )  = + e 2 / w ( g ~ , , ,  _ p ~  p2 ] .  

with the cor responding  vertices shown in fig. 2. 
Observing that eq. (4.1) gives the vacuum expectat ion value of J+, with g2 playing 

the role of the multiplicative renormal izat ion constant ,  one has 

( j + ) =  ~m. 
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Fig. 2. Feynman rules for vertices. 

Using the above Feynman rules one further obtains 

i i c t n h ~  2 2 d2x e'P~(TJ_(x)J+(O)) = rr2m t~ (p) ½i tanh 5~ :. - ~ t n ' - -  
q~ q~ 

2 2 
im e 

2 p - p 2 + e 2 / l r  

which approaches a finite limit as p2 ~ 0, thus showing that no trace of the would be 
Goldstone mode is left. This is in accordance with the results of sect. 3. 

5. Conclusion 

The main point of this paper was to gain some insight into the topological nature of 
the configurations responsible for the simultaneous breakdown of the chiral U(1) 
symmetry and the dynamical fermion mass generation. In the particular model 
chosen to study this problem we confirmed Crewther's ideas on the relevance of 
fractional winding. Of course, in QCD4 fractional winding configurations are expec- 
ted [21 ] to have infinite action; however, the role of finiteness of action is not clearly 
understood beyond the semiclassical approximation [4, 6]. 

We have organized the paper by approaching the problem from four different 
points of view. From the operator  point of view it was already clear that the particle 
structure of this model is the same one as that of the chiral Gross-Neveu model plus 
an uncoupled plasmon, which plays the role of the rt in the U(1) problem. Therefore,  
in this model charge-screened quarks are liberated, closely paralleling what happens 
in the massless Schwinger model [5]. Hence it is the zero bare mass of the fermion, 
and not the dynamically generated one, which plays the decisive role in the 
"screening versus confinement" [22] aspects of the model. The coupling to the gauge 
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field p l a y e d  a s t ab i l i z ing  ro le  in t he  1 / N  e x p a n s i o n ,  i n s u r i n g  tha t  t he  na ive  z e r o -  

o r d c r  s p o n t a n e o u s  b r e a k d o w n  of  t he  chira l  i n v a r i a n c e  is m a i n t a i n e d  in the  c x a c t  

s o l u t i o n ,  c o n t r a r y  to w h a t  o c c u r s  in the  p u r e  chira l  G r o s s - N e v e u  m o d e l .  
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